

Storyspace 3
Mark Bernstein

Eastgate Systems, Inc.
134 Main Street

Watertown MA 02472 USA
+1 (617) 924-0044

bernstein@eastgate.com

ABSTRACT
Storyspace was introduced in one of the first papers presented at
the first ACM Workshop of Hypertext, and gave rise to a number
of significant hypertexts, both fiction and nonfiction. A new
implementation of Storyspace for contemporary computing
environments is clearly desirable. This has been undertaken, with
modest resources and in a short time frame. A number of
surprising new facilities, many of them originally proposed in
contrast or opposition to Storyspace, can be supported without
altering or complicating the underlying Storyspace node and link
model.

CCS Concepts
• Software and its engineering➝ Software creation
and management ➝ Designing Software • Applied
Computing➝Computers in other domains.

Keywords

Storyspace, hypertext, hypermedia, literature, fiction,
education, design, implementation, support, history of
computing, maps, links.

1.INTRODUCTION
We seldom discuss the design and implementation of hypertext
systems anymore. This was once the core concern of this
conference, but few new systems have a been described in these
Proceedings in recent years [25][2][27].

Over time, the constraints and design forces on hypertext systems
have changed. Yet afternoon is still the same, and we still want to
read afternoon [29]. Our interests are not those of the
bibliographer, the book collector, or the media archaeologist: we
simply want to read about (or teach our students about) the fellow
who wants to say that he may have seen his son die this morning.
We prefer convenience, but are willing to take a certain amount of
trouble. We prefer economy, but are willing accept a measure of

expense. We want the experience to conform to the author’s
expectation (intention here is a suspect quality), but of course we
need not mimic every incidental detail, shortcut and flaw.

Though Storyspace was perhaps the smallest of the first-
generation hypertext systems, its implementation demanded
substantial resources. Development was funded in part by a grant
from the Markle Foundation, with support from Broderbund
software, the University of North Carolina, Jackson (Michigan)
Community College, as well as the Roger Schank’s Artificial
Intelligence lab at Yale, where Storyspace authors Michael Joyce
and Jay David Bolter were visiting fellows in successive years.
Writing of Storyspace 1, like other first-generation hypertext
systems, was a substantial undertaking [3].

2.STORYSPACE
Resources on this scale are not readily available for developing
hypertext systems today. This has long been the case; Janet
Murray once remarked that Storyspace’s shortcomings reflected
the dearth of resources available to humanities computing. More
recently, novelist Paul La Farge attributed the failure of previous
efforts to create sustained narrative in hypertext fiction to
Storyspace’s impoverished visual design[40].

Still, we have learned a great deal about hypertext systems since
1987. Software development tools and methodologies have
advanced substantially. What had once required many hands and
many dollars had now to be reproduced as a part-time summer
project by a single hand.

Storyspace 1 [7] [28] [30] is a stand-alone, monolithic hypertext
writing and reading environment, one chiefly intended for reading
and writing hypertext narrative. From the start, it offered a
versatile visual map of node-link hypertexts organized with a
hierarchical backbone, the capability of multiple perspectives and
views, and directional dynamic links whose behavior could
depend on the reader’s trajectory through the hypertext.
Storyspace hypertexts were widely reviewed, admired and reviled,
and many continue to be taught and studied[9].

Over the years, Storyspace has been reimplemented for new
computing environments. Storyspace 1 was written, in Pascal, for
Macintosh System 5. Reimplementations by this author include
Storyspace for Windows (in C), Storyspace 2 (in C++ for
Metrowerks PowerPlant and OS X), and now Storyspace 3 (in
Objective C++ for the Macintosh Cocoa framework using the
Hereford foundation from Tinderbox).

3.IMPLEMENTATION
New hypertext systems are pleasant and interesting tools for study
and research. Because they are new, they are small: changes can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org. HT '16, July 10 - 13, 2016, Halifax, NS,
Canada Copyright is held by the owner/author(s). Publication rights
licensed to ACM. ACM 978-1-4503-4247-6/16/07…$15.00 DOI:
http://dx.doi.org/10.1145/2914586.2914624

be made and tested quickly. Because they are small, changes
have limited scope. Rapid iteration permits freer experimentation.
Moreover, even where resources are ample, the temporal
constraints of contemporary research impose important limitations
on experiments that involve mature systems. The timescales of the
summer internship, the master’s thesis, and of the doctoral
dissertation impose stern and unyielding restrictions. The more
time we spend waiting for the compiler, the less time we have for
creative research.

Mature hypertext systems like Storyspace present a significant
challenge to agile research because everything, naturally, depends
on the hypertext and its nodes.

3.1.Recompiling The World
Three of the oldest classes in Storyspace 2 – the first object-
oriented implementation – are Hypertext, Link, and Node. Over
time, these classes naturally acquired new functionality and
responsibilities. As Storyspace and its foundation gained new
facilities, moreover, almost all these facilities relied on Node and
Hypertext. A text pane obtains the text it is to view from the
Node, the Map View obtains the title of each item from its Node,
the pasteboard manager copies a representation of the Node to the
clipboard when the user selects Copy from the Edit menu.
Everyone needs to use Node, and Node needs to provide
convenience functions to everyone.

As a result, changes to the interface of Node or Hypertext require
recompiling everything else. This is a small penalty for a small
system, but over time the penalty grows. Testing such large and
monolithic classes is difficult, development slows, and the
prospect of improving core classes grows unpleasant. This
unpleasantness may sometimes be tolerable in an industrial
environment, but it is inimical to experimentation. Besides, we
have better uses for graduate students than waiting for the
compiler.

The classic prescription for large and monolithic objects, of
course, is to decompose them into a cluster of small objects, each
with a single responsibility [34]. Unfortunately, such
decompositions proved difficult to find – and because every step
along the way again requires recompiling the world, the work is
exceedingly slow and costly. The classic refactoring prescriptions
– encapsulating instance variables, splitting the object along
implementation seams, sprouting classes – are frustrated by the
regularity and flexibility of the underlying attribute-value store.
Each step in each refactoring is likely to require recompiling
everything.

To restore the system’s malleability, we introduced a family of
new classes, NodeFacades and HypertextFacades, each of which
owns only a single instance variable – the underlying Node or
Hypertext. These facades provide small and focused slices of
functionality; for example, NodeLinks provides access to links
associated with a specific node, NodeIndexer provides an API to
support tf-idf similarity searches, and NodeDeleter provides
access to methods for deleting Nodes. Initially, these classes are
simple facades, forwarding calls to Node or Hypertext. Client
classes can now use one or more facades in place of using
Hypertext or Node, and so the dependency graph is gradually
decoupled. Because the Facade objects simply wrap a pointer,
they can be created and thrown away at will. No changes need to
be made to Node or Hypertext, and so this work can proceed
quickly.

In time, some methods in the underlying classes were seldom or
never used without the intermediacy of the Facade. Here,
functionality could be refactored from the underlying class to the
Facade, and the underlying class can now use the Facade. This
refactoring is invariant with respect to the underlying class’s
interface, and so it once again avoids recompilation. The
progressive refactoring can continue until the base classes are
extensively hollowed out until they serve as Value Objects with a
plethora of trivial helper methods.

I mention this refactoring because it is likely to impact any
compiled hypertext system with significant age or complexity. It
bears some resemblance to familiar idioms – pImpl, proxy,
interface object – but it seems to have been seldom discussed in
the monograph literature[23][31][22][24] and might prove broadly
useful in hypertext research.

4.GUARD FIELDS
4.1.The Storyspace Guard Field
The distinctive feature of Storyspace is its dynamic link, a
unidirectional link that can be activated or deactivated by a guard
field. The guard field is a simply boolean expression whose terms
may include the word clicked or the names of previously-visited
notes enclosed in quotation marks. The guard field

 ("A" & (!"B")) | Anne

is satisfied if the reader has read the note “A” but not the note
“B”, or if the reader has clicked on the word “Anne”. Guard
fields proved invaluable for breaking cycles[5], a central anxiety
of early hypertext research [18][11].

The original design of guard fields proved effective in terms of
hypertext rhetoric was well of engineering. The notation is
concise, a consideration that mattered greatly when storage and
memory alike amounted to a few hundred kilobytes. The original
formulation lends itself readily to parsing by recursive descent;
fast and reliable guard field interpreters were never a source of
concern. The underlying mechanism, which simply disables
unwanted links, is easy for new writers to understand.

Yet the original formulation was not without disadvantages. The
syntax was always hard to teach. The rest of Storyspace could be
explained in one class session – a session in which, in the early
years, many students had their first encounter with a computer –
but guard fields needed a second session to themselves. While
isolated guard fields are easy enough to test, moreover, the entire
hypertext network becomes, with guard fields, a distributed
program describing an elaborate finite state machine. The lack of
visualization and debugging tools, and the distribution of the
implicit state machine over thousands of links, makes editing a
challenge; we know the conditions that the author imposed for this
particular link, but may have no idea why those conditions were
desirable or how following this link changes the state of other
links. Some reasonable constraints – for example, that a link may
be followed n times but not more – are difficult or impossible to
express with guard fields. Other constraints that can be concisely
stated in the story domain – you cannot end Act I without
establishing that there’s a gun in the drawer – must be enforced
by multiple guard fields on many different links, and while these
may not be particularly difficult for experienced writers to
compose, understanding their purpose and intent can be a
challenge to editors and critics who are asked to deduce the
domain constraint from this distributed array of predicates.

4.2.Extending The Guard Field
The terseness of the original notation, so valuable in an era when
memory capacity was scarce, has always baffled novices. Simple
syntactic sugar can greatly clarify the notation:

Old: ("A" & (!"B")) | Anne

New: (visited(A) & unvisited(B)) | clicked(Anne)

The new notation is less esoteric and more readable. We can now
cope with notes that have the same name; the guard field

 visited(/Biographies/Washington)

is satisfied only after visiting the note named “Washington” that is
located in the container, “Biographies.” A common guard field

 unvisited()

is satisfied when the link’s destination has not previously been
visited in this reading.

Since Storyspace 3 is built on the attribute-value store developed
to support Tinderbox, we may easily extend guard fields to refer
to generalized predicates. For example, if we use the note /Amy to
keep track of the current state of the character named “Amy”, then
the guard field

 $Cash(/Amy)>100

is satisfied if Amy has plenty of money, and the guard field

 $Location(/Amy)!="Paris"

is satisfied if Amy is in London or Athens.

Storyspace 3 supports traditional guard field syntax as well by
wrapping it in a new boolean function:

 guard(legacy guard-expression)

Adding the wrapper when importing legacy documents is trivial,
and in this way existing Storyspace hypertexts continue to operate
as they always have while writers are offered a variety of new
notational opportunities.

5. ASSERTIONS AND REQUIREMENTS
The Storyspace tradition of hypertext fiction has conducted a long
dialogue with the separate tradition of instrumental interactive
fiction growing originally from Crowther and Woods’ Adventure
[16] [35] [37]. As a rule, interactive fictions use links to vary what
takes place in the narrative world, while hyperfiction more
frequently uses links to vary the way underlying events are
described: interactive fiction generally focuses on story while
hyperfiction has predominantly focused on plot [10]. Storyspace
accepts (and helped create) this framing in its use of guard fields
that enable or disable individual links, thus determining whether a
node or writing space can be seen now, or if access to it must be
deferred. Exceptions to these inclinations abound, but the
differing emphases on plot and story, suzjet and fabula, cannot be
mistaken.

It is interesting to note in passing that the concerns of adaptive
hypertext [20] are more closely allied with those of interactive
fiction than with hyperfiction. In interactiuve fiction, we test
whether the reader has acquired the Golden Key to decide whether
or not they may pass to the second level of the adventure; in
adaptive hypertext, we test whether the student has mastered
arrays before they can proceed to study stacks and queues. In
each case, we want to preclude access to a lexia until specified
preconditions have been satisfied.

In conventional Storyspace hypertexts these preconditions must
be checked on every link to the restricted writing space. This is
certainly possible, but it is not always convenient, and the
requirement is easy to overlook when revising the hypertext.
Storyspace 3 augments guard fields with an additional predicate,
$Requirements, for each writing space. If a note has
requirements, they must be met before any incoming link can be
traversed. Typical requirements are very much like guard fields:
the requirement
 unvisited(this)

asserts that this writing space can only appear once in any reading.
We may also, as in guard fields, interrogate state variables the
writer has chosen to use. A note with the requirement
 $Cash(/Amy)>100 | $Cash(/May)>100
can be read if Amy or May have plenty of money.

Note that if a writing space has no requirements, link behavior is
unchanged from Storyspace 1. Since no writing spaces created
with Storyspace 1 have any requirements, Storyspace 3 performs
them without change and without a separate legacy or
compatibility mode.
When a link is successfully traversed, Storyspace 3 records that
the note has been visited and increments the note’s counter,
$Visits. In addition, the note may have an $OnVisit action that
asserts changes to the document state. For example, the action
 $Cash(/Amy)=$Cash(/Amy)-50
reduces Amy’s cash balance, and
 $Score(/ArrayQuiz)=$Score(/ArrayQuiz)+1
gives the student-reader credit for a correct answer.

6. EAGER LINKS
A number of early hypertext formalisms envisioned a multi-pane
or multi-window collage of panes in which specified transitions
might occurs as soon as their preconditions were met[42]. Tim
Oren’s GUIDES, for example, embodied animated characters who
could, through gesture or expression, indicate willingness to
discuss a topic raised in the text [39], and the generalization of
this formalism to encompass arguments among the guides
themselves was readily foreseen. “Conversations With Friends”
[4] distinguishes between eager links, which would lead a
character to speak up immediately when their preconditions were
satisfied, and timid links, which would simply lead the character
to seek attention.

Storyspace 3 extends the $Requirements mechanism by providing
shark links. If a note’s requirements are satisfied, Storyspace
additionally checks to see if any shark links lead away from the
note. If an outbound shark link exists and if it can be followed – if
its guard field and its destination’s $Requirements are satisfied –
then the shark link is followed immediately.

Just as $Requirements simplify guard fields by allowing the writer
to refactor terms shared by all a note’s inbound links, shark links
provide convenient exception handling. Suppose that a character
is to board a steamship, and that it is necessary that we actually
see them purchasing a ticket. If they already have purchased a
ticket, they may proceed on board. If the reader’s trajectory has
no yet encompassed a scene in which the character obtains a
ticket, a shark link may interpolate here a trip to the ticket office.
The same effect could be obtained with multiple guarded links,
but at the cost of added complexity.

7. SCULPTURAL HYPERTEXT
Sculptural hypertext [36][6] was originally proposed as a radical,
exotic alternative to familiar note-and-link hypertext. Storyspace
3 incorporates a flexible sculptural hypertext mechanism within
the familiar formalism of Storyspace.

Storyspace hypertexts offer both text links – links anchored to text
spans – and plain links, which are notionally anchored to the
writing space as a whole. Plain links for each note are kept in an
ordered list. If a reader clicks on a word not otherwise linked, or if
she presses the [Return] key, Storyspace follows the highest-
priority plain link which has a satisfied guard field. Only if there
are no satisfied plain links does Storyspace require an explicit
selection.

In Storyspace 3, we can go even further. If the reader has not
clicked on a text link, and if no basic links are found, we next
examine the value of the current deck, a list of string tokens. If
the current deck is empty (as it is in all Storyspace 1 documents),
Storyspace 3 waits for an explicit selection. If the current deck is
not empty, however, Storyspace 3 gathers a pool of all notes for
which

• the note’s $Deck has a term in common with the
current deck

• the note’s $Requirements are satisfied.

• the note is unvisited or, if no eligible note is unvisited,
the note has not been visited more than any other
eligible note.

If more than one such note is found, one note is chosen at random
from the eligible set, and that note becomes the destination.

Though sculptural hypertext has not yet proven to be of great
interest to hypertext research, it has become a staple of literary
games – particularly through Failbetter’s Fallen London [1] and
more broadly through narrativist games like Morningstar’s Fiasco
or Czege’s My Life With Master (see [33]).

8. GENERALIZED STRETCHTEXT
When hypertext systems were more often discussed and their
design more energetically debated, stretchtext – epitomized by
Peter J. Brown’s Guide [13] – was generally viewed as inherently
in opposition to node-link hypertext like Storyspace. Despite the
enthusiasm in early hypertext research for formalism [26], the
formal properties of complex stretchtext networks were never
thoroughly elucidated, and a late effort to reconcile stretchtext
with more familiar paradigms [10] attracted scant notice.
After a long quiescence, however, interest in stretchtext has
increased among the vernacular literary games and IF
communities[21]. Pry, a novella by Danny Cannizzaro and
Samantha Gorman, is a stretchtext fiction that reflects concepts
originally proposed in Fluid[43], and a pattern library of
Stretchtext idioms found in TWINE fiction is in preparation [14].

Though Storyspace 3 strives to avoid modes, combining all its
extensions in a single formalism, one modality cannot be avoided.
The Storyspace reader clicks to follow links, but the writer and
editor must be allowed to click to select and revise text.
Storyspace 3 leverages this long-extant and seemingly-
inescapable modal behavior to support generalized stretchtext
through macro expansion.
When writing, we may insert placeholders that can be interpreted
by the performance engine. For example, the placeholder
 ^include(/sayings/Cicero)

will be replaced, in the reader’s view, by the text of the note
Cicero in the container “sayings”. Similarly,
 ^replace(anchor,note,action)

will embed a link with the specified anchor, If the link is clicked,
the anchor text will be replaced by the contents of the designated
note, and an optional action may be performed in order to record a
change of state.

9.REPRESENTATION
9.1.Document Representation
The central issue confronting the original Storyspace document
format was speed of loading and saving documents. Storyspace
originally ran on 6mHz 68000 processors equipped with a slow
800K floppy disk drive. Data transfer alone required most of the
resources of the computer, and hence it was vital that additional
processing be minimized. Even then, performance was barely
adequate; Stuart Moulthrop’s Victory Garden [38], a hypertext of
986 lexia, 2804 links, and 96,000 words, originally required five
minutes to load1. In addition, the limit imposed by 800K disk
capacity place a premium on compactness.

These design forces led Storyspace 1 to adopt a file format which
was little more than a flattened representation of structs as they
appeared in memory. These were segregated into file chapters,
beginning with an introductory header struct that listed offsets to
each chapter – the collection of node descriptors, the collection of
link descriptors, the text heap, and so forth. Pointers were
replaced by fixed element IDs but little additional processing was
required in order to read or write the document file.

This file representation proved satisfactory for many years, and
continues to be supported. Its weakness, however, lay in its
fragility. If a file was damaged by software error or media defect,
recovery was not much easier than manually reconstructing the
memory image of the running program. In particular, if any of the
offsets recorded in the header were incorrect, the entire file would
be rendered unreadable.[7]

The passage of time and operation of Moore’s Law transformed
the design forces that impact the document’s external
representation. Processors are orders of magnitude faster, and
even laptop and tablet computers make additional processors
available for compute-bound tasks. We no longer labor to squeeze
a novel onto a floppy disk when even a mobile phone can easily
store a library of tens of thousands of books. Storyspace 3 thus
follows Tinderbox in adopting Tinderbox’s XML representation
for its files[8]. XML is not notably compact – Victory Garden, for
example, grows from 800K to 40 Mb – but this file size (and its 2s
load time) are negligible concerns.

9.2.Internal Representation
Performance concerns also mandated that Storyspace 1 represent
its nodes and links as static frames with fixed offsets so that
access to any facet of any node required no more than simple
pointer arithmetic. In consequence, a number of Storyspace
facilities were constrained to use fixed buffers; note titles, for
example, were originally limited to 32 bytes. (In addition to the
constraints imposed by performance, it should be kept in mind

1 These performance concerns were by no means unique to
Storyspace. Students using Intermedia for their coursework
habitually brought a book to the computer lab, the better to pass
the delays imposed by database latency[41].

that no general-purpose language besides LISP at that time
possessed what would today be regarded as even a rudimentary
string library.)

In addition, implicit considerations of the personal computing
environment led to plausible design assumptions that, with the
passage of time, became obsolete and even risible. The Macintosh
screen had a fixed height of 342 pixels, sufficient to display
perhaps 30 lines of rendered type in a space of just under five
inches (12cm). Scrolling a few screenfuls of text was a reasonable
compromise, though some early writers preferred to avoid
scrolling entirely, but the notionally-infinite plane in which all
Macintosh images were rendered was limited in practice to 32,767
pixels. That amounted to nearly 100 screens of text, which seemed
both amply in principle and approaching the capacity of
contemporary scroll bars to control. In time, both screens and
documents became larger; ultimately, the size of the graphic plane
became a real constraint on the Storyspace outline view, which
could only display a few thousand writing spaces. This was of
little concern, of course, when 1000-node hypertexts were at the
outer bound of feasibility, but the constraint persisted into the 21st
century. Here, too, a reimplementation removes difficulties that
the quirks of early systems arbitrarily imposed.

Modern processors and programming environments present
Storyspace with far different constraints. Hypertext nodes are
represented as attribute-value stores with prototype inheritance.
Almost no caching or performance optimization is required to
obtain adequate performance.

10.CONCLUSION
A single summer’s development campaign by a single developer –
a developer who could not in this time be relieved of other
commitments – sufficed to reimplement Storyspace for OS X El
Capitan. Much has been written about preservation and
archeology of digital literature (see [32] [17]), and this effort
concretely improves the accessibility of a number of hypertexts
about which much has been written. Additional benefits of the
reimplementation include greatly improved typography and
enactment and improved accessibility for readers with visual or
motor impairment.

A variety of new facilities have been added to Storyspace,
providing support for interactive fiction, sculptural hypertext, and
generalized stretchtext without introducing additional operating
modes or affecting the simplicity of the underlying link model
[19].

The success of a writing tool depends on the success of the work
written with its aid. That success was clear, in the end, for the
original Storyspace. Though this is the 27th ACM Hypertext
Conference, we arguably write fewer significant hypertexts today
than we wrote at the time of the tenth. “Where again,” I might
ask, “are the hypertexts?” Hypertext broadly, and hypertext
fiction specifically, were for some years the target of a reaction
against the commercial internet[15], against corporate publishing
[12], or against postmodernism. Those battles have been lost and
won: perhaps it is time we once more picked up our virtual pens.

11.ACKNOWLEDGMENTS
I am grateful to many correspondents for assistance on topics
addressed in this paper, including Jay David Bolter, Michael
Joyce, Matt Kirschenbaum, George P. Landow, Stacey Mason,
Janet Murray, and Emily Short. Brent Simmons and Lee Hasiuk
provided welcome technical advice during implementation. Mark
Anderson provided many useful corrections and suggestions for

Getting Started With Hypertext Narrative, on which this paper is
largely based.

12.REFERENCES
[1] Alexis Kennedy, E. “Fallen London”.
[2] Atzenbeck, C., Bernstein, M., Al-Shafey, M. A., and

Mason, S. 2013. “TouchStory: Combining Hyperfiction
and Multitouch Proceedings of the 24th ACM Conference
on Hypertext and Social Media”. HT ‘13. 189-195.

[3] Barret, B. 2012 Memory Machines: the evolution of
hypertext. Anthem Press.

[4] Bernstein, M. 1995 Conversations With Friends:
Hypertexts With Characters. In Hypermedia Design, S.
Fraïse, F. Garzotto, T. Isakowitz, J. Nanard, and M.
Nanard, eds. Springer.

[5] Bernstein, M. 1998. “Patterns of Hypertext”. Hypertext
‘98. 21-29.

[6] Bernstein, M. 2001. “Card Shark and Thespis: exotic tools
for hypertext narrative”. Hypertext 2001: Proceedings of
the 12th ACM Conference on Hypertext and Hypermedia.
41-50.

[7] Bernstein, M. 2002. “Storyspace 1”. Proceedings of the
13th ACM Hypertext Conference. 172-181.

[8] Bernstein, M. 2003. “Collage, composites, construction”.
Proceedings of the fourteenth ACM conference on
Hypertext and hypermedia. 122-123.

[9] Bernstein, M. 2010. “Criticism”. Proceedings of the 21st
ACM conference on Hypertext and hypermedia. 235-244.

[10] Bernstein, M. 2009. “On Hypertext Narrative”. ACM
Hypertext 2009.

[11] Bernstein, M., Joyce, M., and Levine, D. B. 1992.
“Contours of Constructive Hypertext”. European
Conference on Hypermedia Technology. 161.

[12] Birkerts, S. 1994 The Gutenberg Elegies. Faber and Faber.
[13] Brown, P. 1991. “Higher Level Hypertext Facilities:

Procedures With Arguments”. Hypermedia. 3, 2, 91-100.
[14] Dias, B. 2016. “A Garden of Devices in Dynamic Prose”.

in preparation.
[15] Carr, N. G. 2010 The shallows : what the Internet is doing

to our brains. W.W. Norton.
[16] Crowther, W. and Woods, D. 1976. “Adventure”.
[17] Grigar, D. and Moulthrop, S. A. “Pathfinders”.
[18] DeYoung, L. 1990. “Linking Considered Harmful”.

ECHT’90 - Hypertext: Concepts, Systems and
Applications. 238-249.

[19] E. James Whitehead, J. 2002. “Uniform Comparison of
Data Models Using Containment Modeling”. Hypertext
‘02. 182-191.

[20] E. Knutov, P. De Bra, and Pechenizkiy, M. 2009. “AH 12
years later: a comprehensive survey of adaptive
hypermedia methods and techniques”. New Review of
Hypermedia and Multimedia. 15, 5-38.

[21] Short, E. 2016. “Set, check, or gate? A problem in
personality stats”.

[22] Feathers, M. C. 2005 Working effectively with legacy code.
Prentice Hall Professional Technical Reference.

[23] Fowler, M. 1999 Refactoring. Addison-Wesley.
[24] Freeman, S. and Pryce, N. 2010 Growing object-oriented

software, guided by tests. Addison Wesley.
[25] Gaffney, C., Conlan, O., and Wade, V. 2014. “The AMAS

Authoring Tool 2.0: A UX Evaluation Proceedings of the
25th ACM Conference on Hypertext and Social Media”.
HT ‘14. 224-230.

[26] Halasz, F. and Schwartz, M. 1994. “The Dexter Hypertext

Reference Model”. Communications of the ACM. 37, 2,
30-39.

[27] Hargood, C., Davies, R., Millard, D. E., Taylor, M. R., and
Brooker, S. 2012. “Exploring (the Poetics of) Strange (and
Fractal) Hypertexts Proceedings of the 23rd ACM
Conference on Hypertext and Social Media”. HT ‘12. 181-
186.

[28] Bolter, J. D. and Joyce, M. 1987. “Hypertext and Creative
Writing”. Hypertext ‘87. 41-50.

[29] Joyce, M. 1990. “afternoon, a story”.
[30] Joyce, M. 1988. “Siren Shapes: Exploratory and

Constructive Hypertext”. Academic Computing. 11 ff.
[31] Kerievsky, J. 2005 Refactoring to patterns. Addison-

Wesley.
[32] Kirschenbaum, M. G. 2008 Mechanisms : new media and

the forensic imagination. MIT Press.
[33] Bernstein, M. 2016 Getting Started With Hypertext

Narrative. Eastgate Systems, Inc.
[34] Martin, R. C. 2009 Clean code : a handbook of agile

software craftsmanship. Prentice Hall.
[35] Merrit Kopas, E. 2015 Videogames For Humans. Instar

Books.
[36] Millard, D. E., Hargood, C., Jewell, M. O., and Weal, M.

J. 2013. “Canyons, Deltas and Plains: Towards a Unified
Sculptural Model of Location-based Hypertext
Proceedings of the 24th ACM Conference on Hypertext
and Social Media”. HT ‘13. 109-118.

[37] Montfort, N. 2003 Twisty little passages : an approach to
interactive fiction. MIT Press.

[38] Moulthrop, S. 1991 Victory Garden. Eastgate Systems,
Inc.

[39] Oren, T., Solomon, G., Kreitman, K., and Don, A. 1990
Guides: Characterizing the Interface. In The Art of
Human Computer Interface Design, B. Laurel, ed.
Addison Wesley.

[40] Farge, P. L. 2008. “Luminous Airplanes”.
[41] Smith, K. E. and Zdonik, S. B. 1987. “Intermedia: A case

Study of the Differences Between Relational and Object-
Oriented Database Systems”. OOPSLA 87. 22(12), 12,
452-165.

[42] Stotts, P. D. and Furuta, R. 1989. “Petri-net based
hypertext: Document structure with browsing semantics”.
ACM Transactions on Office Information Systems. 7, 1, 3-
29.

[43] Zellweger, P. T., Mangen, A., and Newman, P. 2002.
“Reading and Writing Fluid Hypertexts”. Hypertext 2002.
45-54.

